Bài 9: Nghiệm của đa thức một biến

A. Lý thuyết

1. Nghiệm của đa thức một biến

Nếu tại x = a, đa thức P(x) có giá trị bằng 0 thì ta nói a (hoặc x = a) là một nghiệm của đa thức đó.

2. Chú ý:

+ Một đa thức (khác đa thức không) có thể có một nghiệm, hai nghiệm,… hoặc không có nghiệm.

+ Số nghiệm của một đa thức (khác đa thức không) không vượt quá bậc của nó. Chẳng hạn: đa thức bậc nhất chỉ có một nghiệm, đa thức bậc hai không quá hai nghiệm,…

Ví dụ: Tìm nghiệm của đa thức P(x) = 2y + 6

Từ 2y + 6 = 0 ⇒ 2y = -6 ⇒ y = -3

Vậy nghiệm của đa thức P(x) là -3.

B. Bài tập

Bài 1: Chứng tỏ các đa thức sau không có nghiệm

a) P(x) = x2 + 1                             b) Q(y) = 2y4 + 5

Hướng dẫn giải:

a) Vì x2 ≥ 0 nên x2 + 1 ≥ 1

Do đó: P(x) = x2 + 1 > 0 nên đa thức P(x) vô nghiệm.

b) Vì y4 ≥ 0 nên 2y4 + 5 > 0

Do đó: Q(y) = 2y4 + 5 > 0 nên đa thức Q(x) vô nghiệm.

Bài 2: Tìm nghiệm của đa thức

a) x2 – 2003x – 2004 = 0

b) 2005x2 – 2004x – 1 = 0

Hướng dẫn giải:

a) Đa thức x2 – 2003x – 2004 = 0 có hệ số a = 1, b = -2003, c = -2004

Khi đó ta có: a – b + c = 1 – (-2003) + (-2004) = 0

Nên đa thức x2 – 2003x – 2004 = 0 có nghiệm x = -1

b) Đa thức 2005x2 – 2004x – 1 = 0 có hệ số a = 2005, b = -2004, c = -1

Khi đó ta có: a + b + c = 2005 – 2004 – 1 = 0

Nên đa thức 2005x2 – 2004x – 1 = 0 có nghiệm x = 1.

BÀI VIẾT CÙNG CHUYÊN MỤC

Lương Văn Điệp

GIỚI THIỆU TÁC GIẢ: Lương Văn Điệp

Ngề nghiệp: Giáo viên Toán - Tin. Trường THCS Phương Tú, Ứng Hòa, Hà Nội.
Theo dõi
Thông báo về
guest
0 Comments
Inline Feedbacks
View all comments
0
Would love your thoughts, please comment.x
()
x