Bài 7: Hình bình hành

1. Định nghĩa

Hình bình hành là tứ giác có các cạnh đối song song

Tứ giác ABCD là hình bình hành ⇔Lý thuyết: Hình bình hành | Lý thuyết và Bài tập Toán 8 có đáp án

Lý thuyết: Hình bình hành | Lý thuyết và Bài tập Toán 8 có đáp án

Chú ý đặc biệt: Hình bình hành là một hình thang đặc biệt (hình bình hành là hình thang có hai cạnh bên song song)

2. Tính chất hình bình hành

Định lí: Trong hình bình hành:

+ Các cạnh đối bằng nhau.

+ Các góc đối bằng nhau.

+ Hai đường chéo cắt nhau tại trung điểm của mỗi đường.

3. Dấu hiệu nhận biết hình bình hành

+ Tứ giác có các cạnh đối song song là hình bình hành.

+ Tứ giác có các cạnh đối bằng nhau là hình bình hành.

+ Tứ giác có hai cạnh đối song song và bằng nhau là hình bình hành.

+ Tứ giác có các góc đối bằng nhau là hình bình hành.

+ Tứ giác có hai đường chéo cắt nhau tại trung điểm mỗi đường là hình bình hành.

Ví dụ: Cho hình bình hành ABCD. Gọi E là trung điểm của AD, F là trung điểm của BC. Chứng minh BE = DF và ABEˆ = CDFˆ .

Hướng dẫn:

Lý thuyết: Hình bình hành | Lý thuyết và Bài tập Toán 8 có đáp án

Xét tứ giác BEDF cóLý thuyết: Hình bình hành | Lý thuyết và Bài tập Toán 8 có đáp án

⇒ BEDF là hình bình hành

⇒ BE = DF (hai cạnh đối song song và bằng nhau)

Ta có: ABCD là hình bình hành nên BADˆ = BCDˆ       ( 1 )

BEDF là hình bình hành nên BEDˆ = DFBˆ       ( 2 )

Lý thuyết: Hình bình hành | Lý thuyết và Bài tập Toán 8 có đáp án

Từ ( 2 ) và ( 3 ) ⇒ AEBˆ = DFCˆ       ( 4 )

Xét Δ ABE có BAEˆ + AEBˆ + ABEˆ = 1800      (5)

Xét Δ DFC có DFCˆ + FCDˆ + FDCˆ = 1800      (5)

Từ ( 1 ), ( 4 ), ( 5 ) ⇒ ABEˆ = CDFˆ (đpcm)

 

BÀI VIẾT CÙNG CHUYÊN MỤC

Lương Văn Điệp

GIỚI THIỆU TÁC GIẢ: Lương Văn Điệp

Ngề nghiệp: Giáo viên Toán - Tin. Trường THCS Phương Tú, Ứng Hòa, Hà Nội.
Theo dõi
Thông báo về
guest
0 Comments
Inline Feedbacks
View all comments
0
Would love your thoughts, please comment.x
()
x