A. Lý thuyết
1. Đường thẳng trung tuyến của tam giác
• Đoạn thẳng AM nối đỉnh A của tam giác ABC với trung điểm M của cạnh BC gọi là đường trung tuyến (xuất phát từ đỉnh A hoặc ứng với cạnh BC) của tam giác ABC. Đôi khi, đường thẳng AM cũng gọi là đường trung tuyến của tam giác ABC.
• Mỗi tam giác có ba đường trung tuyến.
Đường trung tuyến của một tam giác là đoạn thẳng nối đỉnh và trung điểm cạnh đối diện
2. Tính chất ba đường trung tuyến của tam giác
• Định lý 1: Ba đường trung tuyến của một tam giác cùng đi qua một điểm. Điểm gặp nhau của ba đường trung tuyến gọi là trọng tâm của tam giác đó.
• Định lý 2: Vị trí trọng tâm: Trọng tâm của một tam giác cách mỗi đỉnh một khoảng bằng 2/3 độ dài đường trung tuyến đi qua đỉnh ấy.
Ví dụ: Với G là trọng tâm của ΔABC ta có:
B. Bài tập
Bài 1: Cho hai đường thẳng xx’ và yy’ cắt nhau tại O. Trên tia Ox lấy hai điểm A, B sao cho A nằm giữa O và B, AB = 2OA. Trên yy’ lấy hai điểm L và M sao cho O là trung điểm của LM. Nối B với L, B với M và gọi P là trung điểm của đoạn MB, Q là trung điểm của đoạn LB. Chứng minh rằng các đoạn thẳng LP và MQ đi qua A.
Hướng dẫn giải:
Ta có O là trung điểm của đoạn LM
Suy ra BO là đường trung tuyến của ΔBLM (1)
Mặt khác BO = BA + AO vì A nằm giữa O và B hay OB = 2OA + OA = 3OA
Suy ra AO = (1/3)OB hay BA = (2/3)BO (2)
Từ (1) (2) suy ra A là trọng tâm của ΔBLM (tính chất trọng tâm)
Mà LP và MQ là các đường trung tuyến của ΔBLM vì P là trung điểm MB và O là trung điểm của đoạn LB
Suy ra các đoạn thẳng LP và MQ đi qua A (theo tính chất 3 đường trung tuyến)
Bài 2: Cho ΔABC, BC = a, CA = b, AB = c. Kẻ trung tuyến AM. Đặt AM = ma. Chứng minh rằng
Hướng dẫn giải:
Thông báo: Blog Lương Điệp (luongdiep.com) là nơi chia sẻ Template Powerpoint; Trò chơi Powerpoint; Tài liệu Giáo dục; Bài giảng điện tử; Giáo án điện tử; Đề thi: học tập trực tuyến, ... miễn phí, phi lợi nhuận.
Nếu bạn sở hữu file do bản quyền thuộc về bạn, hãy liên hệ ngay với chúng tôi để chúng tôi tháo gỡ theo yêu cầu. Xin cám ơn!