1. Ba vị trí tương đối của đường thẳng và đường tròn
a) Đường thẳng và đường tròn cắt nhau
Khi một đường thẳng có hai điểm chung A, B với đường tròn (O) ta nói đường thẳng cắt đường tròn tại hai điểm phân biệt. Khi đó ta có những kết quả quan trọng sau:
Theo định lý Pitago ta có: OH2 = MO2 – MH2
Mặt khác ta cũng có: OH2 = R2 – AH2 nên suy ra
MO2 – MH2 = R2 – AH2 ⇔ MH2 – AH2 = MO2 – R2
⇔ (MH – AH)(MH + AH) = MO2 – R2
+ Nếu M nằm ngoài đoạn AB thì MA.MB = MO2 – R2
+ Nếu M nằm trong đoạn AB thì MA.MB = R2 – MO2
Mối liên hệ khoảng cách và dây cung: R2 = OH2 + AB2/4
b) Đường thẳng và đường tròn tiếp xúc nhau.
Khi một đường thẳng Δ chỉ có một điểm chung H với đường tròn (O), ta nói đường thẳng tiếp xúc với đường tròn, hay Δ là tiếp tuyến của đường tròn (O). Điểm H gọi là tiếp điểm của tiếp tuyến với đường tròn (O)
Như vậy nếu Δ là tiếp tuyến của (O) thì Δ vuông góc với bán kính đi qua tiếp điểm
Ta có OH = R
Nếu hai tiếp tuyến của đường tròn cắt nhau tại một điểm thì
+ Điểm đó cách đều hai tiếp điểm
+ Tia kẻ từ điểm đó đến tâm O là tia phân giác góc tạo bởi 2 tiếp tuyến
+ Tia kẻ từ tâm đi qua điểm đó là tia phân giác góc tạo bởi hai bán kính đi qua các tiếp điểm
+ Tia kẻ từ tâm đi qua điểm đó thì vuông góc với đoạn thẳng nối hai tiếp điểm tại trung điểm của đoạn thẳng đó.
c) Đường thẳng và đường tròn không giao nhau
Khi một đường thẳng Δ và đường tròn (O) không có điểm chung ta nói đường thẳng Δ và đường tròn (O) không giao nhau. Khi đó OH > R
2. Hệ thức giữa khoảng cách từ tâm đường tròn đến đường thẳng và bán kính của đường tròn
Vị trí tương đối của đường thẳng và đường tròn | Số điểm chung | Hệ thức giữa d và R |
Đường thẳng và đường tròn cắt nhau | 2 | d < R |
Đường thẳng và đường tròn tiếp xúc nhau | 1 | d = R |
Đường thẳng và đường tròn không giao nhau | 0 | d > R |
3. Ví dụ cụ thể
Câu 1: Cho đường tròn tâm O bán kính bằng 6cm và một điểm A cách O 10cm. Kẻ tiếp tuyến AB với đường tròn (B là tiếp điểm). Tính độ dài đoạn AB.
Hướng dẫn:
OA = 10cm ⇒ A nằm ngoài đường tròn
Ta có: AB là tiếp tuyến, B là tiếp điểm, khi đó OB = R = 6cm.
AB ⊥ OB áp dụng định lý Py – ta – go ta có:
AB2 + OB2 = OA2
Vậy AB = 8cm
Thông báo: Blog Lương Điệp (luongdiep.com) là nơi chia sẻ Template Powerpoint; Trò chơi Powerpoint; Tài liệu Giáo dục; Bài giảng điện tử; Giáo án điện tử; Đề thi: học tập trực tuyến, ... miễn phí, phi lợi nhuận.
Nếu bạn sở hữu file do bản quyền thuộc về bạn, hãy liên hệ ngay với chúng tôi để chúng tôi tháo gỡ theo yêu cầu. Xin cám ơn!