Bài 4: Vị trí tương đối của đường thẳng và đường tròn

1. Ba vị trí tương đối của đường thẳng và đường tròn

a) Đường thẳng và đường tròn cắt nhau

Khi một đường thẳng có hai điểm chung A, B với đường tròn (O) ta nói đường thẳng cắt đường tròn tại hai điểm phân biệt. Khi đó ta có những kết quả quan trọng sau:

Lý thuyết: Vị trí tương đối của đường thẳng và đường tròn - Lý thuyết Toán lớp 9 đầy đủ nhất

Lý thuyết: Vị trí tương đối của đường thẳng và đường tròn - Lý thuyết Toán lớp 9 đầy đủ nhất

Lý thuyết: Vị trí tương đối của đường thẳng và đường tròn - Lý thuyết Toán lớp 9 đầy đủ nhất

Theo định lý Pitago ta có: OH2 = MO2 – MH2

Mặt khác ta cũng có: OH2 = R2 – AH2 nên suy ra

MO2 – MH2 = R2 – AH2 ⇔ MH2 – AH2 = MO2 – R2

⇔ (MH – AH)(MH + AH) = MO2 – R2

+ Nếu M nằm ngoài đoạn AB thì MA.MB = MO2 – R2

+ Nếu M nằm trong đoạn AB thì MA.MB = R2 – MO2

Mối liên hệ khoảng cách và dây cung: R2 = OH2 + AB2/4

b) Đường thẳng và đường tròn tiếp xúc nhau.

Khi một đường thẳng Δ chỉ có một điểm chung H với đường tròn (O), ta nói đường thẳng tiếp xúc với đường tròn, hay Δ là tiếp tuyến của đường tròn (O). Điểm H gọi là tiếp điểm của tiếp tuyến với đường tròn (O)

Như vậy nếu Δ là tiếp tuyến của (O) thì Δ vuông góc với bán kính đi qua tiếp điểm

Ta có OH = R

Nếu hai tiếp tuyến của đường tròn cắt nhau tại một điểm thì

+ Điểm đó cách đều hai tiếp điểm

+ Tia kẻ từ điểm đó đến tâm O là tia phân giác góc tạo bởi 2 tiếp tuyến

+ Tia kẻ từ tâm đi qua điểm đó là tia phân giác góc tạo bởi hai bán kính đi qua các tiếp điểm

+ Tia kẻ từ tâm đi qua điểm đó thì vuông góc với đoạn thẳng nối hai tiếp điểm tại trung điểm của đoạn thẳng đó.

Lý thuyết: Vị trí tương đối của đường thẳng và đường tròn - Lý thuyết Toán lớp 9 đầy đủ nhất

Lý thuyết: Vị trí tương đối của đường thẳng và đường tròn - Lý thuyết Toán lớp 9 đầy đủ nhất

c) Đường thẳng và đường tròn không giao nhau

Khi một đường thẳng Δ và đường tròn (O) không có điểm chung ta nói đường thẳng Δ và đường tròn (O) không giao nhau. Khi đó OH > R

Lý thuyết: Vị trí tương đối của đường thẳng và đường tròn - Lý thuyết Toán lớp 9 đầy đủ nhất

2. Hệ thức giữa khoảng cách từ tâm đường tròn đến đường thẳng và bán kính của đường tròn

Vị trí tương đối của đường thẳng và đường trònSố điểm chungHệ thức giữa d và R
Đường thẳng và đường tròn cắt nhau2d < R
Đường thẳng và đường tròn tiếp xúc nhau1d = R
Đường thẳng và đường tròn không giao nhau0d > R

3. Ví dụ cụ thể

Câu 1: Cho đường tròn tâm O bán kính bằng 6cm và một điểm A cách O 10cm. Kẻ tiếp tuyến AB với đường tròn (B là tiếp điểm). Tính độ dài đoạn AB.

Hướng dẫn:

Lý thuyết: Vị trí tương đối của đường thẳng và đường tròn - Lý thuyết Toán lớp 9 đầy đủ nhất

OA = 10cm ⇒ A nằm ngoài đường tròn

Ta có: AB là tiếp tuyến, B là tiếp điểm, khi đó OB = R = 6cm.

AB ⊥ OB áp dụng định lý Py – ta – go ta có:

AB2 + OB2 = OA2

Lý thuyết: Vị trí tương đối của đường thẳng và đường tròn - Lý thuyết Toán lớp 9 đầy đủ nhất

Vậy AB = 8cm

BÀI VIẾT CÙNG CHUYÊN MỤC

Lương Văn Điệp

GIỚI THIỆU TÁC GIẢ: Lương Văn Điệp

Ngề nghiệp: Giáo viên Toán - Tin. Trường THCS Phương Tú, Ứng Hòa, Hà Nội.
Theo dõi
Thông báo về
guest
0 Comments
Inline Feedbacks
View all comments
0
Would love your thoughts, please comment.x
()
x