Mẹo nhỏ: Để tìm kiếm chính xác các tài liệu trên Blog Lương Điệp, hãy search trên Google với cú pháp: "Từ khóa" + "luongdiep". (Ví dụ: giáo án toán 6 luongdiep). Tìm kiếm ngay
1885 lượt xem

Bài 3, 4, 5: Những hằng đẳng thức đáng nhớ

1. Bình phương của một tổng

Với A, B là các biểu thức tùy ý, ta có: ( A + B )2 = A2 + 2AB + B2.

Ví dụ:

a) Tính ( a + 3 )2.

b) Viết biểu thức x2 + 4x + 4 dưới dạng bình phương của một tổng.

Hướng dẫn:

a) Ta có: ( a + 3 )2 = a2 + 2.a.3 + 32 = a2 + 6a + 9.

b) Ta có x2 + 4x + 4 = x2 + 2.x.2 + 22 = ( x + 2 )2.

2. Bình phương của một hiệu

Với A, B là các biểu thức tùy ý, ta có: ( A – B )2 = A2 – 2AB + B2.

Ví dụ:

a) Tính ( 5x -y )2

b) Viết biểu thức 4x2 – 4x + 1 dưới dạng bình phương của một hiệu

Hướng dẫn:

a) Ta có ( 5x -y )2 = ( 5x )2 – 2.5x.y + ( y )2 = 25x2 – 10xy + y2.

b) Ta có 4x2 – 4x + 1 = ( 2x )2 – 2.2x.1 + 1 = ( 2x – 1 )2.

3. Hiệu hai bình phương

Với A, B là các biểu thức tùy ý, ta có: A2 – B2 = ( A – B )( A + B ).

Ví dụ:

a) Tính ( x – 2 )( x + 2 ).

b) Tính 56.64

Hướng dẫn:

a) Ta có: ( x – 2 )( x + 2 ) = ( x )2 – 22 = x2 – 4.

b) Ta có: 56.64 = ( 60 – 4 )( 60 + 4 ) = 602 – 42 = 3600 – 16 = 3584.

4. Lập phương của một tổng

Với A, B là các biểu thức tùy ý, ta có: ( A + B )3 = A3 + 3A2B + 3AB2 + B3.

Ví dụ:

a) Tính ( x + 2 )3.

b) Viết biểu thức x3 + 3x2 + 3x + 1 dưới dạng lập phương của một tổng.

Hướng dẫn:

a) Ta có ( x + 2 )3 = x3 + 3.x2.2 + 3x.22 + 23 = x3 + 6x2 + 12x + 8.

b) Ta có x3 + 3x2 + 3x + 1 = x3 + 3x2.1 + 3x.12 + 13 = ( x + 1 )3.

5. Lập phương của một hiệu.

Với A, B là các biểu thức tùy ý, ta có: ( A – B )3 = A3 – 3A2B + 3AB2 – B3.

Ví dụ :

a) Tính ( 2x – 1 )3.

b) Viết biểu thức x3 – 6x2y + 12xy2 – 8y3 dưới dạng lập phương của một hiệu.

Hướng dẫn:

a) Ta có: ( 2x – 1 )3 = ( 2x )3 – 3.( 2x )2.1 + 3( 2x ).12 – 13 = 8x3 – 12x2 + 6x – 1

b) Ta có : x3 – 6x2y + 12xy2 – 8y3 = ( x )3 – 3.x2.2y + 3.x.( 2y )2 – ( 2y )3 = ( x – 2y )3

6. Tổng hai lập phương

Với A, B là các biểu thức tùy ý, ta có: A3 + B3 = ( A + B )( A2 – AB + B2 ).

Chú ý: Ta quy ước A2 – AB + B2 là bình phương thiếu của hiệu A – B.

Ví dụ:

a) Tính 33 + 43.

b) Viết biểu thức ( x + 1 )( x2 – x + 1 ) dưới dạng tổng hai lập phương.

Hướng dẫn:

a) Ta có: 33 + 43 = ( 3 + 4 )( 32 – 3.4 + 42 ) = 7.13 = 91.

b) Ta có: ( x + 1 )( x2 – x + 1 ) = x3 + 13 = x3 + 1.

7. Hiệu hai lập phương

Với A, B là các biểu thức tùy ý, ta có: A3 – B3 = ( A – B )( A2 + AB + B2 ).

Chú ý: Ta quy ước A2 + AB + B2 là bình phương thiếu của hiệu A + B.

Ví dụ:

a) Tính 63 – 43.

b) Viết biểu thức ( x – 2y )( x2 + 2xy + 4y2 ) dưới dạng hiệu hai lập phương

Hướng dẫn:

a) Ta có: 63 – 43 = ( 6 – 4 )( 62 + 6.4 + 42 ) = 2.76 = 152.

b) Ta có : ( x – 2y )( x2 + 2xy + 4y2 ) = ( x )3 – ( 2y )3 = x3 – 8y3.

0 0 votes
Đánh giá bài viết

Thông báo: Blog Lương Điệp (luongdiep.com) là nơi chia sẻ Template Powerpoint; Trò chơi Powerpoint; Tài liệu Giáo dục; Bài giảng điện tử; Giáo án điện tử; Đề thi: học tập trực tuyến, ... miễn phí, phi lợi nhuận.

Nếu bạn sở hữu file do bản quyền thuộc về bạn, hãy liên hệ ngay với chúng tôi để chúng tôi tháo gỡ theo yêu cầu. Xin cám ơn!

Bài viết mới cập nhật:

Theo dõi
Thông báo về
guest
0 Góp ý
Inline Feedbacks
View all comments
0
Would love your thoughts, please comment.x