A. Lý thuyết
1. Vẽ tam giác biết ba cạnh
Bài toán: Vẽ tam giác ABC, biết AB = 2cm, BC = 4cm, AC = 3cm
• Vẽ đoạn thẳng BC = 4cm.
• Trên cùng một nửa mặt phẳng bờ BC, vẽ cung tròn tâm B bán kính 2cm và cung tròn tâm c bán kính 3cm.
• Hai cung tròn trên cắt nhau tại A.
• Vẽ các đoạn thẳng AB, AC, ta được tam giác ABC.
2. Trường hợp bằng nhau cạnh – cạnh – cạnh
Nếu ba cạnh của tam giác này bằng ba cạnh của tam giác kia thì hai tam giác đó bằng nhau theo trường hợp cạnh – cạnh – cạnh.
ΔABC và ΔA’B’C’ có:
B. Bài tập
Bài 1: Cho tam giác ABC. Vẽ cung tròn tâm A bán kính BC, vẽ cung tròn tâm C bán bính BA, chúng cách nhau giữa ở D (D và B nằm khác phía đối với bờ AC). Chứng minh rằng AD // BC
Hướng dẫn giải:
Xét ΔABC và ΔCDA có AC chung
AB = CD (gt)
BC = DA (gt)
Nên ΔABC = ΔCDA (c-c-c)
⇒ ∠ABC = ∠CAD (hai góc tương ứng bằng nhau)
Hai đường thẳng AD, BC tạo AC hai góc so le
Do đó AD // BC
Bài 2: Tam giác ABC có AB = AC, M là trung điểm của BC. Chứng mình rằng AM vuông góc với BC.
Hướng dẫn giải:
Xét ΔAMB và ΔAMC có:
AB = AC
AM chung
MB = MC (gt)
⇒ ΔAMB = ΔAMC (c-c-c)
Suy ra ∠BAM = ∠CAM; ∠AMB = ∠AMC (góc tương ứng bằng nhau)
Mà ∠AMB + ∠AMC = 180° (hai góc kề bù)
Nên ∠AMB = ∠AMC = 180°/2 = 90° hay AM ⊥ BC
Thông báo: Blog Lương Điệp (luongdiep.com) là nơi chia sẻ Template Powerpoint; Trò chơi Powerpoint; Tài liệu Giáo dục; Bài giảng điện tử; Giáo án điện tử; Đề thi: học tập trực tuyến, ... miễn phí, phi lợi nhuận.
Nếu bạn sở hữu file do bản quyền thuộc về bạn, hãy liên hệ ngay với chúng tôi để chúng tôi tháo gỡ theo yêu cầu. Xin cám ơn!